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Abstract

Human-level visnal performance has remained largely heyond the reach of engineered
systems despite decades of research and significant advances in problem formulation.
algorithms and computing power. We posit that significant progress can be made by
combining existing technologies from machine vision, insights from theoretical neuro-
science and large-scale distributed computing. Such claims have been made before and
so it is quite reasonable to ask what are the new ideas we bring to the table that
might make a difference this time around. From a theoretical standpoint, our primary
point of departure from current practice is our reliance on exploiting time in order to
turn an otherwise intractable unsupervised problem into a locally semi-supervised. and
plausibly tractable, learning problem. From a pragmatic perspective, our system archi-
tecture follows what we know of cortical neuroanatomy and provides a solid foundation
for scalable hierarchical inference. This combination of features provides the framework
for implementing a wide range of robust object-recognition capabilities.



Final Report

Funding for this grant was cut oft a few months after it begun with the consequence that
work was barely begin on the core problems described in statement of work. Nonetheless.
work has proceeded on related problems funded by other, non-governmental sources, and
so it makes sense for this final report for this award to provide a broader survey of the
related work and the prospects for its success in the coming vears. We start with a little
history which sets the stage for the current resurgence in interest in brain-like computing
architectures.

In July of 2005, Tom Dean, the principal investigator for this grant presented a paper
at AAAI entitled “A Computational Model of the Cerebral Cortex” [5]. The paper de-
scribed a graphical model of the visual cortex inspired by David Mumford’s computational
architecture [21, 22, 17]. At that same meeting, Jeff Hawkins gave an invited talk entitled
“From AI Winter to Al Spring: Can a New Theory of Neocortex Lead to Truly Intelligent
Machines?” drawing on the content of his popular book On Intelligence [11]. A month
later at IJCAI, Geoff Hinton gave his Research Excellence Award lecture entitled “What
kind of a graphical model is the brain?”

In all three cases, the visual cortex is cast in terms of a generative model in which cn-
sembles of neurons are modeled as latent variables. All three of the speakers were optimistic
regarding the prospects for realizing useful, biologically-inspired systems. In the interven-
ing two years, we have learned a great deal about both the provenance and the practical
value of those ideas. The history of the most important of these is both interesting and
helpful in understanding whether these ideas are likely to yield progress on some of the
most significant challenges facing Al

Are we poised to make a significant leap forward in understanding computer and bio-
logical vision? If so, what are the main ideas that will fuel this leap forward and are they
new or recycled? How important is the role of Moore’s law in our pursuit of human-level
perception? The full story delves into the role of time, hierarchy, abstraction, complexity,
symbolic reasoning, and unsupervised learning. It owes much to insights that have been
discovered and forgotten at least once every other generation for many decades.

Since J.J. Gibson [9] presented his theory of ecological optics, scientists have followed his
lead by trying to explain pereeption in terms of the invariants that organisms learn. Peter
Foldiak [7] and more recently Wiskott and Sejnowski [33] suggest that we learn invariances
from temporal input sequences by exploiting the fact that sensory input tends to vary
quickly while the environment we wish to model changes gradually. Gestalt psychologists
and psychophysicists have long studied spatial and temporal grouping of visual objects and
the way in which the two operations interact [15], and there is certainly ample evidence to
suggest concrete algorithins.



The idea of hierarchy plays a central role in so many disciplines it is fruitless to trace
its origins. Even as Hubel and Weisel unraveled the first layers of the visual cortex. they
couldn’t help but posit a hicrarchy of representations of increasing complexity [13]. How-
ever, direct evidence for such hierarchical organization is slim to this day and machine
vision has vet to actually learn hierarchies of more than a couple layvers despite compelling
arguments for their utility [31].

Horace Barlow [1] pointed out more than forty years ago that strategies for coding
visual information should take advantage of the statistical regularities in natural immages.
This idea is the foundation for work on sparse representations in machine learning and
computational neuroscience [23|.

By the time information reaches the primary visual cortex (V1), it has already gone
through several stages of processing in the retina and lateral geniculate. Following the
lead of Hubel and Wiesel, many scientists believe that the output of V1 can be modeled
as a tuned band-pass filter bank. The component features or basis for this representation
are called Gabor filters — mathematically, a Gabor filter is a two-dimensional Gaussian
modulated by a complex sinusoid — and are tuned to respond to oriented dark bars against
a light background (or, alternatively, light bars against a dark background). The story of
why scientists came to this conclusion is fascinating, but the conclusion may have been
premature; more recent work suggests Gabor filters account for only about 20% of the
variance observed in the output of V1 [24].

We're sure that temporal and spatial invariants, hierarchy, levels of increasingly abstract
features. unsupervised learning of image statistics and other core ideas that have been
floating around for decades must be part of the answer, but machine vision still falls far
short of human capability in most respects. Are we on the threshold of a breakthrough and
if so what will push us through the final barriers?

Temporal and Hierarchical Structure

The primate cortex serves many functions and most scientists would agree that we've
discovered only a small fraction of its secrets. Let’s suppose that our goal is to build a
computational model of the ventral visual pathway, the neural circuitry that appears to be
largely responsible for recognizing what objects are present in our visual ficld. A successful
model would, among other things, allow us to create a video search platform with the same
quality and scope that Google and Yalioo! provide for web pages. Do we have the pieces in
place to succeed in the next two to five vears?

In many areas of science and engineering, time is so integral to the description of the
central problem that it can’t be ignored. Certainly this is the case in speech understand-
ing, automated control, and most areas of signal processing. By contrast., in most areas of
machine vision time has been considered a distraction. a complicating factor that we can



safely ignore until we've figured out how to interpret static images. The prevailing wisdom
is that time will only make the problem of recognizing objects and understanding scenes
more difficult. A similar assumption has influenced much of the work in computational neu-
roscience, but now that assumption is being challenged. There are a number of proposals
that suggest time is an essential ingredient in explaining human perception [7, 6, 12, 33].
The common theme uniting these proposals is that the perceptual sequences we experience
provide essential cues that we exploit to make critical discriminations. Consecutive sam-
ples in an audio recording or frames in a video sequence are likely to be examples of the
same pattern undergoing changes in illumination, position, orientation, etc. The examples
provide exactly the variation required to train models able to recognize patterns invariant
with respect to the observed transformations.

There is an even more compelling explanation when it comes to learning hierarchies of
spatial and temporal features. Everyone agrees, despite a lack of direct evidence, that the
power of the primate cortex to learn useful representations owes a great deal to its facility in
organizing concepts in hierarchies. Hierarchy is used to explain the richness of language and
our extraordinary ability to quickly learn new concepts from only a few training examples.

It seems likely that learning such a hierarchical representation from examples (input and
and output pairs) is at least as hard as learning polynomial-size circuits in which the sub-
concepts are represented as bounded-input boolean functions. Kearns and Valiant showed
that the problem of learning polynomial-size circuits (in Valiant’s probably approximately
correct learning model) is infeasible given plausible cryptographic limitations [1-].

However, if we are provided access to the inputs and outputs of the circuit’s internal
subconcepts, then the problem becomes tractable [27]. This implies that if we had the
“circuit diagram” for the visual cortex and could obtain labeled data, inputs and outputs,
for each component feature, robust machine vision might become feasible. Instead of labels.
we have knowledge — based on millennia of experience summarized in our genes — cnabling
us to transform an otherwise intractable unsupervised learning problem (one in which the
training data is unlabeled) into a tractable semi-supervised problem (one in which we can
assume that consecutive samples in time series are more likely than not to have the same
label).

This property called temporal coherence is the basis for the optimism of several re-
searchers that they can succeed where others have failed.! If we're going to make progress.
temporal coherence has to provide some significant leverage. It is important to realize.
however, that exploiting temporal coherence does not completely eliminate complexity in

'Or, at least, it is one half of the basis for betting on the success of this approach, and the half on
which we have concentrated. The other half relies on the fact that machines, like humans, can intervene
in the world to resolve ambiguity and distinguish cause from correlation. Intervention can be as simple as
exploiting parallax to resolve accidental alignments between distinet but parallel lines.



learning hierarchical representations. Knowing that consecutive samples are likely to have
the same label is helpful, but we are still left with the task of segmenting the time series
into subsequences having the same label, a problem related to learning HNINs [8].

Learning Invariant Features

It’s hard to come up with a trick that nature hasn’t already discovered. And, while
nature is reluctant to reveal its tricks, decades of machine vision researchers have come up
with their own. Whether or not we have found neural analogs for the most powerful of
these, a pragmatic attitude dictates adapting and adopting them, where possible. David
Lowe [18] has developed an effective algorithin for extracting image features called SIFT
(for scale invariant feature transtorm). The algorithm involves searching in scale space for
features in the form of small image patches that can be reliably recovered in novel images.
These features are used like words in a dictionary to categorize images, and cach image is
suminarized as an unordered collection of such picture words.

The basic idea of using an unordered collection of features to support invariance has
been around for some time. It even has a fairly convincing story in support of its biological
plausibility [26].? However, balancing invariance (which encourages false positives) against
selectivity (which encourages false negatives) requires considerable care to get right. For
instance, one approach argues that overlapping features which correspond to the recep-
tive fields of cortical neurons avoid false positives [31]; another approach provides greater
selectivity by taking into account geometric relationships among the picture words [30].

Lowe’s trick of searching in scale space has an analog in finding spatiotemporal features
i video [16]. Finding corresponding points in consecutive frames of a video is relatively
easy for points associated with patches that stand out from their surrounding context.
We can exploit this fact to track patches across multiple frames. This method identifies
features that are persistent in time. In addition, it learns to account for natural variation in
otherwise distinctive features. There are cells in the retina, lateral geniculate and primary
visnal cortex whose receptive fields span space and time and are capable. in theory, of
performing this sort of tracking [4]. Exactly how these spatiotemporal receptors are used
to extract shape, distinguish figure from ground and infer movement, is unknown, but
clearly here is another place where time plays a key role in human perception.

Why the ventral visual pathway?

Our focus is on V1 and the ventral visual pathway, that part of V2 respounsible for
identifying what is in the visual field. The motivation is that this scems to be the sweet
spot for relatively uncontested knowledge concerning brain function and understanding
of what is being represented and how it is being computed. By way of contrast, the

“Serre et al [29] describe a system achieving state-of-the-art performance in object recognition by com-

hining biological ¢lues and technigues from machine vision.



dorsal visual pathway — responsible for tracking the location and motion of objects in
our visual field [10] — is less well-studied and presents a more complicated picture. As
an example, positional information appears to be affected by motion [32] and determined
relative to a primary object [2]. Saccades and head movements tend to change the point of
view and must somehow be integrated with the retinotopically mapped information flowing
through the lateral geniculate nuclei. Both of these present us with problems in how to
integrate disparate information sources, including mixing retinotopic with non-retinotopic
information, a challenging problem for which we presently lack any clear solution (see Rolls
and Stringer [28] for an interesting start).

While we believe V1 and the ventral pathway provide useful clues for developing artificial
perceptual systems, we are neither so naive nor so ignorant as to be unaware that the brain
still holds many secrets, and our model does not even account for all the currently extant
data. As mentioned above, Olshausen and Field [24] give the somewhat pessimistic estimate
that we presently understand only about 20% of V1’s functional behavior. We simply don’t
know what the other 80% of the computation is, whether it is important, or what it might
be useful for. On the other side of the coin, we know that attention plays a significant
role in visual perception [25], but we are assuming we can make progress without detailed
understanding of human attentional mechanisms. A similar situation pertains at the level of
neuroanatomy. Our model incorporates a version of feedforward and feedback connections.
but does not presently include lateral connections [19]. Again, we believe we can achieve
some modicum of success without lateral connections, but we await experimental results
before venturing a definitive answer. The take away on this is that we expect to adapt our
model in response to shortcomings exposed by experimentation, but we are aware both of
the gaps in our knowledge of the brain and the discrepancies between our model and what
is presently known about the visual cortex.

Will big ideas or big iron win the race?

Compared with previous approaches, there is one other advantage we have allowing us
to consider models of realistic scale: increased computing power and the where withal to
take advantage of it. The human primary visual cortex (V1) consists of approximately 10°
neurons and 6 x 10° connections [3]. Whereas we have relatively poor data for modeling
individual neurons, despite the press for the IBM / EPFL Blue Brain Project, we are
better positioned with respect to the aggregate behavior of thousands of neurons. Most
of the serious computational brain models aimn at the level of a cortical hyper-column. a
structural unit consisting of 10*-10° neurons [20]. If we assign one processor per hyper-
column, a computing cluster with 10% processor cores and accompanying communications
capacity can simulate on the order of 10® neurons. This would be about 10% of V1, and
somewhat beyond the reach of most academic labs, but Google and several other industrial
labs can field resources at this scale and beyond. Working at a smaller scale would risk
confounding effects introduced by the scale with effects of the model itself. Working at



a realistic scale allows us to focus on the model. Moreover, deploying resources at scale
allows us to turn around experiments in minutes or hours, as opposed to days or weeks.
This means we can iterate over alternatives, which will surely be necessary, and explore the
space of solutions in a way not practical for an under-resourced system.

Simulating the brain to achieve human-level sensory and cognitive abilities is just start-
ing to make the transition from tantalizing possibility to practical, engineered reality. Mak-
ing that transition will take both good ideas - including venerable old ideas and some new
ones — and heavy-duty computing power. While we believe the inclusion of time is an
essential element of a solution. and our model ofters promise of success, we are aware that
more may be necessary. The extant data on brain function is notably sparse, and our model
makes no attempt to take all known brain function into account, e.g., attentional mecha-
nisms. What we do have is a plausible model - biologically inspired though certainly not
biologically accurate — and the tools to evaluate and improve it. While many of the ideas
have been around for some time, the infrastructure to quickly and convincingly evaluate
them has been lacking. Robust, high-performance distributed computing hardware and
software doesn’t make you smarter, but it does allow vou to reach a little further and that
could make the crucial difference.
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